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Abstract

The measurement of residual dipolar couplings (RDCs) from partially oriented molecules is now widely used to provide restraints
for NMR structure determination. Bond vibrations, random angular fluctuations around bond vectors and conformational
exchange all influence the magnitude of the experimental RDCs. The effect that angular fluctuations have upon the magnitude
of RDCs is quantitatively compared using three new models (elliptic, uni-dimensional, and equally populated two site jump) and
three established models (static, isotropic motion in a cone and free diffusion about a fixed symmetry axis: Woessner�s model)
for motional averaging in the limit that the amplitude of motion bmax 6 15–20�. The influence of the different motional models
on the value of Robs determined from the distribution of RDCs is explored. The consequences of the different types of angular
motion for the accurate determination of bond vector orientation, with respect to the alignment tensor, A, is investigated. The extent
to which motion influences the magnitude of RDCs is compared to some non-dynamic factors affecting RDC size.
� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Residual dipolar couplings (RDCs) [1–8] from pro-
teins dissolved in solutions containing an aligned med-
ium such as bicelles [8], phages [9], or polyacrylamide
gels [10], provide information on the orientation of indi-
vidual inter-nuclear vectors, with respect to a global
molecular alignment tensor, A. RDC datasets have pro-
ven to be especially useful and are now widely employed
to provide restraints in the NMR determination of pro-
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tein structure [11]. In addition, site specific dynamics
provides valuable information about the flexibility of
single or multi domain proteins. NMR relaxation stud-
ies [12] are most often used to characterise local dynam-
ics in proteins. Recently two different approaches have
been proposed to determine site specific order parame-
ters that characterise the amplitude of intra-molecular
dynamics of individual bond vectors using RDCs from
partially aligned proteins [13,14]. Surprisingly, these
methods led to low order parameters which have been
interpretated as indicating larger and slower motions
must exist in addition to the fast and small amplitude
motions determined from 15N relaxation studies alone
[15]. However, a recent study based on a refinement of
the ubiquitin structure using a two site jump model
has shown that the experimental RDCs can be inter-
preted using motions of smaller amplitudes [13,14,16].
In the following, we investigate and compare the effect
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that specific types of intramolecular dynamics can have
upon RDCs [12,15,17–27].
2. Method

The RDC (units Hz) between two nuclei I and S, that
form a rigid dipolar inter-nuclear vector v (static model,
Fig. 1A) and have a frequency difference |xI�xS| � 2p
Jobs, where Jobs is the observed spectral splitting, is [7]:
Fig. 1. The different models of local intramolecular dynamics are each
represented on an octant of the unit sphere. The spherical polar
coordinates hav and /av for the vector vav corresponding to the average
values of h (C) and / (C) are shown in a coordinate frame defined by
the principal axis system (PAS) of the alignment tensor, A. The angle
bmax is the maximum angle between vav and v (C). In each case, the
region on the sphere enclosed by the tip of the internuclear vector v (C)
is highlighted in blue and the vibrationally averaged internuclear
distance Æræ is assumed to be constant. The various models are: (A)
Static model. (B) Isotropic internal motion model: the vectors v (C) lie
within a cone defined by the blue surface area. (C) Elliptical. (D) Uni-
dimensional. (E) Two site jump. (F) Free diffusion of the internuclear
axis about a fixed symmetry axis, Woessner�s model.
RDCðvÞ ¼ Dað3cos2hav � 1Þ þ 3

2
Drsin

2hav cos 2/av; ð1Þ

where

Da ¼ � cIcS�hl0Aað3cos2X� 1Þ
16p2hr3ISi

;

Dr ¼ RDa

ð2Þ

and

R ¼ ðAxx � AyyÞ
3Aa

;

Aa ¼
1

3
Azz �

Axx þ Ayy

3

� �
;

ð3Þ

where R characterizes the rhombicity and Aa is the unit-
less axial component of the symmetric traceless molecu-
lar alignment tensor, A, in its principle axis system
(PAS), hav, /av define the orientation of the dipolar in-
ter-nuclear vector with respect to the PAS of the align-
ment tensor. Æræ is the vibrationally averaged
internuclear distance. X is the angle the restraint director
makes with B0, and in ideal solutions of bicelles and
phages, it is p/2 and 0, respectively. We note also that
a molecule possessing an anisotropic magnetic suscepti-
bility, Dv, can adopt a weak preferential orientation in a
magnetic field, B0. However, the RDCs due to magnetic
field induced orientation are usually small compared to
samples dissolved in solutions of either bicelles or
phages [8,28].

In the following we are interested in describing the
effect of angular fluctuations on the RDC between
two nuclei with spins I = 1/2. The effect of bond vibra-
tion upon the RDC will be neglected here, as it has
been discussed elsewhere; it can be taken into account
using a vibrationally averaged effective inter-nuclear
distance Æræ [33]. The orientation of a pair of nuclei,
with respect to the PAS of the alignment tensor, A is
described by a dipolar inter-nuclear vector v (C), where
C represents one of the allowed conformations for this
pair of nuclei. The angular fluctuations of the dipolar
vector are described by an ensemble {C} of allowed
conformations, and assuming a constant energy poten-
tial function, the allowed conformations have equal
probability. If interchange between conformations in
the ensemble is rapid compared to any chemical shift
differences exhibited by the ensemble, the NMR spec-
trum of each nucleus exhibits a single chemical shift,
and the observed RDC is equal to the average RDC

from each dipolar vector v (C) in the ensemble {C}
(see Eq. (4)). In the following, we have assumed that
the PAS and the components Da and Dr of the align-
ment tensor A remain fixed and invariant in the molec-
ular frame, and that the local internal motions do not
cause a significant change to the overall structure of
the protein. With these assumptions, the RDC averaged
over the ensemble is given by:



Fig. 2. A schematic diagram showing the interrelationship between the
vectors vav, v

0 (b), and the images formed by rotations through the
angle c or by p/2 about vav, v (b,c), and v00(b), respectively.

120 M. Deschamps et al. / Journal of Magnetic Resonance 172 (2005) 118–132
hRDCðvðCÞÞiC ¼ Dað3hcos2hðCÞiC � 1Þ

þ 3

2
Drhsin2hðCÞ cos 2/ðCÞiC

¼ Dað3hz2ðCÞiC � 1Þ þ 3

2
Drhx2ðCÞ

� y2ðCÞiC

¼ Da

R R
fCgð3z2ðCÞ � 1ÞdSR R

fCg dS
þ 3

2
Dr

�
R R

fCg x
2ðCÞ � y2ðCÞdSR R

fCg dS
; ð4Þ

where dS is the elementary surface element of the re-
gion enclosed by the tip of the internuclear vector
v{C}. The vector v (C) can be defined using either
spherical coordinates (h (C),/ (C)) or cartesian coordi-
nates (x(C),y(C),z(C)) in the PAS of the alignment ten-
sor A. The average denoted by ÆæC is the average
formed from all of the allowed conformations, C, for
a particular type of local internal motion. In the limit
of a static structure Eq. (4) reduces to Eq. (1), and in
the limit of complete random isotropic motion, the
RDC tends to zero.

Several different types of angular fluctuations will be
considered here, these are:

(a) Two-dimensional models: internal motion within a
cone [8,12], Fig. 1B, and its anisotropic counterpart:
Elliptical model [25], Fig. 1C.

(b) A uni-dimensional model of intra-molecular
motion, Fig. 1D, which has two limiting cases which
are referred to as vertical (c = 0) and horizontal
(c = p/2) motions, respectively.

(c) The average RDC in the case of an equally popu-
lated two site jump model, where the inter-nuclear
vector jumps by an angle 2bmax, Fig. 1E.

(d) The Woessner model of intra-molecular dynamics,
which describes the free diffusion of the inter-nu-
clear dipolar vector about a fixed symmetry axis,
Fig. 1F [34], is discussed in Appendix A.

For each dynamic model, the region on the unit
sphere enclosed by the tip of the inter-nuclear vector
v (C) is highlighted in blue in Fig. 1. In the following,
we consider the linear average values hav and /av of
h (C), / (C) over the ensemble of allowed conformations.
The set of vectors vav, v

0 (b) � vav, v
00 (b)�vav describe the

orientation of any internuclear vector v (C) = v (b,c)
from the allowed conformations C where v (b,c) is ob-
tained from v 0 (b) = v (hav + b, /av) after a rotation by
an angle c about vav, and v00 (b) = v (b,p/2) (see Fig. 2).
This new vector is defined by

vðb; cÞ ¼ cos bvav þ sin b cos cðv0ðbÞ � vavÞ
þ sin b sin cðv00ðbÞ � vavÞ ð5Þ
with

v0ðbÞ� vav ¼ðx0;y0;z0Þ ¼ ðcoshav cos/av;coshav sin/av;�sinhavÞ;
v00ðbÞ� vav ¼ðx00;y 00;z00Þ ¼ ð�sin/av;cos/av;0Þ: ð6Þ
3. Results for different models of motional averaging

3.1. Isotropic internal motion [8,12,24]

For isotropic internal motion (diffusion in a cone of
semi-angle bmax), the average is obtained using Eqs.
(4) and (5) and the limits {C} = {v (b,c)/b 2 [0;bmax],
c 2 [0;2p], where 0� 6 bmax 6 180�}. The values of
x (C), y (C), and z (C) are derived from Eq. (5), and the
resulting RDC is given by [8,12,24]:

hRDCiC ¼ cos bmax þ cos2bmax

2

�
Dað3cos2hav � 1Þ

þ 3

2
Drsin

2hav cos 2/av

�

¼ SisoðbmaxÞ � RDCðvavÞ: ð7Þ

Compared to the static model, Eq. (1), this particular
model of local internal motion gives rise to RDCs with
a similar functional form except that they are scaled by
the factor Siso (bmax). Siso (bmax) has a similar functional
form to the order parameter SLS

cone ¼ ðSLS
cone

2Þ1=2, where
ðSLS

coneÞ
2 is the order parameter commonlyused for describ-

ing NMR relaxation behaviour [12]. The curve Siso (b) is
shown in Fig. 3; in contrast to the order parameter
ðSLS

coneÞ
2 describing autocorrelated relaxation processes,

it can, in some motional regimes exhibiting large ampli-
tude, adopt negative values. When the cone is extended
to either the whole half-sphere, i.e., bmax = 90� or the en-
tire sphere, i.e., bmax = 180�, the RDC vanishes. How-
ever, unlike Siso (b), the order parameter ðSLS

coneÞ
2

describing relaxation behaviour is generally only affected
by motions which are faster than the rotational correla-
tion time [24]. In principle the order parameter Siso (bmax)
could also be affected by localmotions occurring onmuch
slower time scales than those affecting ðSLS

coneÞ
2. If Siso

(bmax) is assigned the value 0.95 ðS2
isoðbmaxÞ ¼ 0:9025Þ,

then bmax = 15�. Molecular dynamics studies [24] have
indicated that this motional model with bmax having a



Fig. 3. The function Siso (bmax) = (cosbmax + cos2bmax)/2, as a func-
tion of the angle bmax. An expansion of the initial portion of this curve
and its Taylor expansion (dashed line) are shown in the upper right
hand corner, demonstrating the good agreement between each curve
whenever 0� 6 bmax 6 20�.
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value of approximately 15� is relevant for the structured
parts of proteins, although the model might not be suit-
able for mobile regions such as loop or tail regions. Aver-
age GAF amplitudes of 14.4–17� have been determined
for secondary structure elements with single N–NH
RDC data sets, in combination with high-resolution
structural models (X-ray structure with a resolution of
0.9 Å) [26]. Recent studies have determined values for
S2
isoðbmaxÞ as low as 0.4–0.6 using measurements of RDCs

in multiple alignment media [14] or by sampling different
internuclear dipolar vectors [13]. These values correspond
to Siso (bmax) between 0.63 and 0.77, leading to bmax

approximatively in the range of 43 and 33�, respectively.
Anticipating the results of future sections it is helpful to
express sinbmax, cosbmax, and cos

2bmax using the approx-
imate Taylor series expansions: sinbmax � bmax,
cos bmax � 1� b2

max=2, cos2bmax � 1� b2
max. Assuming

bmax lies within the range 0� 6 |bmax| 6 20� these approx-
imate series expansions are accurate to within�0.5% and
Siso (bmax) can thenbewritten as SisoðbmaxÞ � 1� 3b2

max=4.
A comparison of the values for Siso (bmax) obtained from
these two forms as a function of bmax is shown in the
expansion in Fig. 3. After employing these Taylor series
expansions, Eq. (7) can be written as:

hRDCiC¼RDCðvavÞþDRDC
dyn

�Dað3cos2hav�1Þþ3

2
Drsin

2havcos2/av

�3b2
max

4
Dað3cos2hav�1Þþ3

2
Drsin

2havcos2/av

� �
;

ð8Þ
where the first part of Eq. (8), RDC(vav), is the RDC ex-
pected in the case of no local internal motion, Eq. (1),
and the second portion, DRDC
dyn , represents the contribu-

tion that this model of local internal dynamics makes
to the RDC.

3.2. Elliptical model [25]

Anewmodel for internalmotionhas recently been pro-
posed, which corresponds to diffusion in a cone having an
elliptical section of maximum semi-angle bmax, eccentric-
ity e (e = 0 corresponds to spherical symmetry and e = 1
to a unidimensional model), if themajor axis of the ellipse
is parallel to v (b,w) � vav, Eq. (5) is written as:

vðb; cÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2bþ e2sin2csin2b

q
vav

þ cos c sin bvðb;wÞ

þ sin c sin b
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
vðb;wþ p=2Þ ð9Þ

and using the integration limits C = {b 2 [0;bmax],
c 2 [0;2p]} and 0� 6 bmax 6 20�, Eq. (4) becomes:

hRDCiC ¼ Da

R 2p
0

R bmax

0 ½3z2ðCÞ � 1�rðb; cÞdbdcR 2p
0

R bmax

0 rðb; cÞdbdc

þ 3

2
Dr

R 2p
0

R bmax

0 ½x2ðCÞ � y2ðCÞ�rðb; cÞdbdcR 2p
0

R bmax

0
rðb; cÞdbdc

;

ð10Þ
where the parameter r (b,c) is defined to be:

rðb; cÞ ¼ sin b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2sin2c

q
ð11Þ

and the values of x (C), y (C), and z (C) are derived from
Eq. (9). Using the Taylor series expansions for the angles
shown above and performing the calculation shown in
Eq. (10) with MAPLE, the average RDC is found to be:

hRDCiC ¼RDCðvavÞþDRDC
dyn

�Dað3cos2hav�1Þþ3

2
Drsin

2hav cos2/av

þb2
max

Da

2e2

�
2e4�4e2þ sin2havð�1þ7e2

�

�4e4þ2cos2wð1� e2þe4ÞÞþKðeÞ
EðeÞ ð1� e2Þ

�ðe2þ sin2havð1�2e2þcos2wðe2�2ÞÞÞ
�

þ Dr

4e2

�
ðe4� e2þ1Þ�ð�2sin2wcoshav sin2/av

þ2cos2wcos2/av�cos2wsin2hav cos2/avÞ

þ3ðe4�2e2Þsin2hav cos2/avþ
KðeÞ
EðeÞ ð1� e2Þ

� ð2� e2Þðcos2wsin2hav cos2/av=2
�

�cos2wcos2/avþ sin2wcoshav sin2/avÞ

þ3e2sin2hav cos2/av=2Þ
��

; ð12Þ

where K (k) and E (k) are complete elliptic integrals of
the first and second kind for which the modulus
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k = e, and where K (0) = E (0) = p/2, E (1) = 1 and
lime fi 1 K (e) =1, but lime fi 1(1 � e2)K (e)/E (e) = 0.
The elliptical model is relevant according to MD tra-
jectories [24]. However, this function is very complex,
and further discussion will be limited to two limiting
cases: (1) The isotropic motional model, Eq. (8), is ob-
tained when e = 0, and (2) A uni-dimensional motional
model arises when e = 1, and is described in the next
section.

3.3. Uni-dimensional motion (e = 1)

In the following, we assume uni-dimensional motion
where the inter-nuclear vector is located on a circular
arc whose two ends are described by the vectors
v (bmax,c) and v (bmax,c + 180�), with 0� 6 |bmax| 6 20�.
This corresponds to the limit e = 1 of the elliptical mo-
tion when w = c (see Fig. 1). With these assumptions the
dynamically averaged RDC can be expressed using Eq.
(12) as the sum of a static and a dynamic contributions,
Eq. (13):

hRDCiCUni-dim ¼ RDCðvavÞ þ DRDC
dyn

� Da ð3cos2hav � 1Þ þ 3

2
Rsin2hav cos 2/av

� �

þ b2
max

3
Da

�
3ðcos2csin2hav � cos2havÞ

þ 3

2
Rðcos 2/avðcos2ccos2hav � sin2hav

�sin2cÞ � sin 2c sin 2/av cos havÞ
�
: ð13Þ

The first part of Eq. (13), RDC (vav), is the RDC ex-
pected in the case of no local internal motion, Eq. (1),
and the second portion, DRDC

dyn , represents the contribu-
tion that this unusual and restricted type of local inter-
nal dynamics makes to the RDC. The dynamical
contribution to the averaged RDC is proportional to
b2
max=3, and for the two specific cases where c = 0 (verti-

cal model) and c = p/2 (horizontal model), the averaged
RDCs are given by

c ¼ 0;

hRDCiCvertical
� Da ð3cos2hav � 1Þ þ 3

2
Rsin2hav cos 2/av

� �

� b2
maxDa cos 2hav �

3

2
R
cos 2hav cos 2/av

3

� �
;

ð14Þ

c¼ p=2;

hRDCiChorizontal
�Da ð3cos2hav�1Þþ3

2
Rsin2hav cos2/av

� �

�b2
maxDa cos2havþ

3

2
R
ð1þ sin2havÞcos2/av

3

� �
:

ð15Þ
If it is assumed that isotropic and unidimensional mo-
tions can occur independently for the same inter-nuclear
vector, the individual motional models, Eqs. (7) and (13),
can be superimposed and this type of model could be
used for describing a specialised form of anisotropic mo-
tion [25]. In this case, the averaged RDC is given by:

hRDCiisoþuni-dim ¼ SisoRDCðvavÞ
þ SisoðDRDC

dyn Þuni-dim; ð16Þ

where Siso = (cosbmax + cos2bmax)/2.
3.4. Two-site jump model exhibiting equal populations

The averaged RDC can also be quantitatively ex-
pressed in the case of a two site equally populated jump
model where each inter-nuclear vector jumps by the an-
gle 2bmax, where 0� 6 |bmax| 6 20�, and the ensemble in-
ter-converts at a rate fast compared to any chemical
shift differences. The average orientation is again de-
scribed by vav, the two sites are described by the vectors
v (bmax,c) and v (bmax,c + 180�), and the angle between
the axis of the jump and the axis of vertical motion is
as shown in Figs. 1E and 2. With these assumptions
the dynamically averaged RDC is found to be:

hRDCiC2sites
¼ 1

2
½RDCðvðbmax;cÞÞþRDCðvðbmax;cþ180�ÞÞ�

�Da ð3cos2hav�1Þþ3

2
Rsin2hav cos2/av

� �

þb2
maxDa 3ðcos2csin2hav� cos2havÞþ

3

2
R

�

�ðcos2/avðcos2ccos2hav� sin2hav� sin2cÞ

�sin2csin2/av coshavÞ
�
: ð17Þ

The dynamical contribution to the exchange averaged
RDC is proportional to b2

max, and for the two specific
cases where c = 0 (vertical exchange jump model) and
c = p/2 (horizontal exchange jump model), the exchange
averaged RDCs are given by:

c¼ 0;

hRDCiC2sites
� Da ð3cos2hav�1Þþ3

2
Rsin2hav cos2/av

� �

�3b2
maxDa cos2hav�

3

2
R
cos2hav cos2/av

3

� �
;

ð18Þ

c¼ p=2;

hRDCiC2sites
� Da ð3cos2hav�1Þþ3

2
Rsin2hav cos2/av

� �

�3b2
maxDa cos2havþ

3

2
R
ð1þsin2havÞcos2/av

3

� �
:

ð19Þ



Fig. 4. The magnitude of DRDC
dyn due to local motions as a function of

hav and /av. DRDC
dyn for curves a and d (isotropic) is defined as the

difference between Eq. (1) and the RDC calculated using Eq. (7) for
isotropic motion. DRDC

dyn (vertical) for curves c and f, and DRDC
dyn

(horizontal) for curves b and e, are calculated using either Eq. (14) or
Eq. (15). DRDC

dyn is plotted as a function of hav for six values of /av (0, 15,
30, 45, 60, 75, and 90) assuming bmax = 15� in each case. Da = 1 Hz
and R is either 0.0 (A–C) or 0.6 (D–F).
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Compared to the continuous ensemble uni-dimen-
sional model described in Section 3.3, Eqs. (13)–(15),
the RDC averaged by two-site-exchange is seen to be
three times more sensitive to motion. The factor of three
occurs because Eq. (17) is formed from a linear average
of two contributions having equal magnitude, with each
proportional to b2

max, e.g., [b
2 + (�b)2]/2 = b2, whereas

Eqs. (13)–(15) are developed using continuous
averages employing integrals of the type hb2i ¼R b
�b u

2 du=2b ¼ b2=3. Consequently, bmax values derived
using this two site jump model need to be increased byffiffiffi
3

p
for them to be comparable with values derived from

Eqs. (13)–(15). For a system undergoing independent
vertical and horizontal uni-dimensional two site ex-
change simultaneously (4-site jump), the dynamically
averaged RDC is given by Eq. (20):

hRDCðvðb;0ÞÞiC2sites
þhRDCðvðb;p=2ÞÞiC2sites

=2

� 1� 3

2
b2
max

� �
Da ð3cos2hav� 1Þþ 3

2
Rsin2hav cos2/av

� �
:

ð20Þ
It is known that for autocorrelated dipole–dipole

relaxation with constant inter-nuclear distance the order
parameter S2 describing an equally populated two site
jump model, with jump angle 2bmax is given by
S2 = (3cos22bmax + 1)/4 [12]. Expanding this trigono-
metric function in a Taylor series and truncating at the
first term, as discussed earlier, leads to S2 ¼ 1� 3b2

max,
which is a good approximation provided 0� 6
|bmax| 6 20�. Identifying the function 1� 3b2

max=2 in
Eq. (20) with a similar order parameter S gives
S2 ¼ 1� 3b2

max which has a similar functional form to
the order parameter used for exchange averaged auto-
correlated dipole–dipole relaxation. The model of free
diffusion about a fixed symmetry axis, or Woessner�s
model, and its link to the two-site jump model is treated
in Appendix A and a discussion about the effects of mo-
tional averaging on the distribution of RDCs is also in-
cluded in Appendix B.
4. Models of motional averaging and the differential

effect upon individual RDCs

Several studies[15,18–21,25] have indicated that, at
room temperature, fast vibrations or librations of the
protein backbone NH vector occur with angular ampli-
tudes of about 15–20�. In a coordinate frame attached to
the peptide plane the angular amplitudes of in-plane and
out-of-plane NH vector vibrations are thought to be
between 3–5� and 10–12�, respectively [19,22,23]. Simu-
lations of the effects of the different types of intra-molec-
ular dynamics upon the calculated RDCs, compared to
the static model, are shown in Fig. 4 for two different
values of R as a function of hav. In each case, the ampli-
tude of motion was assumed to be similar with
bmax = 15� and Da = 1 Hz. The largest change to the
dynamically averaged RDC is approximately ±0.1 Hz
or about ±5% of the maximum static value of 2 Hz,
Fig. 4D. These calculations suggest that the magnitude
of an RDC is not particularly sensitive to small ampli-
tude motions or librations (|bmax| 6 15�) and a detailed
analysis of these small motions from measurements of
individual RDC values will require precise measure-
ments in addition to the requirement for an accurate
knowledge of the magnitude of the alignment tensor,
A (see later sections). In the case of the vertical motional
model, the influence upon the RDC is proportional to
cos2hav and any motional effect will vanish whenever
hav = 45� or 135�. For the vertical and horizontal mod-
els, the correction term Ddyn

RDC will be modulated by the
angle c whenever the motion is anisotropic [29]. The dif-
ference between curves (B and E) and (C and F) are
quite small, which might explain why anisotropic
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motion is difficult to determine, and none of the motions
currently predicted by molecular dynamics features
large degrees of anisotropy. The different models give
rise to slightly different motional effects as expected,
but the differences are typically fairly small.
5. The effect of motional averaging upon the

determination of hav and /av from an individual

RDC: the effect of Robs

It has been shown for a few proteins that a single
structure representation is sufficient to fit the RDCs
within the experimental errors [16,30]. This is true when
Siso is nearly constant for the ensemble of inter-nuclear
vectors, and in such a case the error on Robs, the ob-
served value of R, will often be small (see Appendix B).

We consider here the case when there is some aniso-
tropic motion, and when the rhombicity R is different
from 0. In this case, motional averaging influences the
value of Robs determined from the distribution of RDCs
and affects the back-calculation of hav and /av from an
individual RDC (i.e., using one alignment tensor). A
more detailed analysis of some additional consequences
of motional averaging upon back calculated values of
hav and /av from an individual RDC is shown in Appen-
dix C.

Each model for motional averaging has a slightly dif-
ferent influence upon the value of R determined from a
distribution of RDCs, Robs (see Appendix B). Insight
into the influence that Robs exerts upon the back-calcu-
lated angles can be explored by assuming that instead of
motion being the influence upon the RDC the internu-
clear vector remains static, in a distribution with rhomb-
icity Robs, but is given a new orientation. The new
orientation can be defined using either a vertical, Dh,
or an azimuthal, D/, angular displacement as shown
by Eqs. (21) and (22).

RDCexp ¼ Da

�
ð3cos2ðhav þ DhÞ � 1Þ

þ 3

2
Robssin2ðhav þ DhÞcos2/av

�
; ð21Þ

RDCexp ¼ Da

�
ð3cos2ðhav � 1Þ

þ 3

2
Robssin2hav cos 2ð/av þ D/Þ

�
: ð22Þ

In these equations RDCexp is calculated, via Eq. (1),
for orientation (hav, /av), employing values for Da and
R assuming a static distribution (see Fig. 5). Robs repre-
sents the value for R assuming motional averaging of the
distribution of RDCs. The angular displacements Dh
and D/ are the small changes necessary to the polar an-
gles (hav, /av) so as to give the value RDCexp when using
Robs. Employing Da = 1 Hz, R = 0.3, and Robs = 1.05R
the displacement angles vary within the range of
Dh = ± 4.6� and D/ = ± 8.9�; the results are shown in
Figs. 5A and B. The main influence of Robs upon hav
is limited to those internuclear vectors lying close to
the equatorial plane and, furthermore, for these vectors
the effect upon /av can be quite significant if /av hap-
pens to be close to 0, 90, 180 or 270�. Consequently,
the error introduced by different values for Robs is usu-
ally going to be quite small. However, for those internu-
clear vectors close to the equatorial plane and which
have the special /av angles discussed above, the back
calculated orientation may be affected by an error on
the rhombicity.
6. Other factors influencing the magnitude of a RDC

The above analysis has revealed situations where lo-
cal internal dynamics (bmax 6 20�) can influence the
magnitude of a RDC by �5%. It is, therefore, of interest
to briefly highlight other effects influencing the magni-
tude of RDCs such as those from the NMR measure-
ment process or from the assumption of uniform
interatomic distances for similar atom pairs. The preci-
sion of each resonance frequency after Fourier transfor-
mation of a time domain signal is strongly influenced by
S/N ratio, linewidth, interpoint digital resolution, and
truncation artefacts [31,32]. Hence, extracting RDCs
from direct time domain fitting of constant time datasets
is sometimes advantageous [33]. A relatively small error
of 10% to 180� pulse widths has been shown to decrease
experimental Ca–Ha splittings by �0.5 Hz (�0.3%
assuming J(Ca–Ha) � 140 Hz). The partial cancellation
of cross-correlation effects and the contribution of sev-
eral RDCs to the same splitting, such as Ha–HN when
the N–HN splitting is measured, also causes small errors
[35]. Anisotropy in J is reported to be very small for N–
HN, Ca–Ha, and Ha–HN couplings although it has been
calculated to be of the order of 0.45% and 0.51% of the
observed RDCs for Ca–C 0 and C 0–N spin pairs [32,35].
The assumption of a uniform vibrationally averaged
internuclear distance is an important influence in quan-
titative analysis of RDCs. The high resolution X-ray
structure of crambin (1EJG.pdb, R = 0.54 Å) reports a
RMSD of bond lengths from ideal values of 0.023 Å
[36]. Assuming this degree of variability exists in solu-
tion it would influence the RDCs with approximately
the same order of magnitude as that of low amplitude
(bmax 6 20�) internal motion. Another small but inter-
esting effect comes from the intrinsic precision of a
pdb file, where each coordinate is typically reported with
a precision of 5 · 10�4. Hence, there is always an uncer-
tainty in the interatomic distance and thus in the RDC
of at least �0.5% (for RDCs of 20 Hz this corresponds
to 0.1 Hz) due to the truncation of atomic coordinates.



Fig. 5. (A) The required variation to the angle hav, Dh, in order to maintain the equality of Eq. (21) as a function of hav when Robs is assigned the
value 1.05 · R. RDCexp was computed using Eq. (1) and /av was assigned values of 0�, 30�, 45�, 60�, and 90�. For /av = 45�, the rhombic term
vanishes and Dh is zero. (B) The required variation to the angle /av, D/, in order to maintain the equality of Eq. (22) as a function of /av when using
the values for Robs of 1.01 · R (yellow), 1.02 · R (pink) or 1.05 · R (red). In each case only 8.3, 15.9, and 29.7% of the vectors are found to require a
value for D/ greater than 1�.
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The effects of vertical and horizontal angular displace-
ments of 1�, 2�, and 3� upon the magnitude of a RDC
compared to the RDC from a static structure as a func-
tion of hav and /av are shown in Fig. 6. For hav = 45�
and /av = 90� (RDC = 0.275 Hz), effects as high as
�0.06 Hz can be seen for a vertical angular shift of 1�,
corresponding to 21.8% of the theoretical RDC. Vertical
rather than horizontal angular shifts are found to lead
greater effects. Moreover, the angular deviations of X-
ray structures have been noted to induce systematic
errors to an alignment tensor calculated with singular
value decomposition [37].
7. Conclusion

The effect upon RDCs of three new models for mo-
tional averaging (elliptic [25], uni-dimensional and
equally populated two site jump) and three established
models (static, isotropic motion in a cone and free diffu-
sion about a fixed symmetry axis: Woessner�s model)
have been compared assuming that the amplitude of
motion in each case, bmax 6 15–20�. Whenever
bmax 6 20�, the impact of the different motional models
upon individual RDCs is fairly similar and compared to
a static model the RDC can be reduced by up to �±5%;
however, since the motional effects are proportional to
b2
max they will increase rapidly with increasing amplitude.

Furthermore, in the limit that bmax 6 20� differential ef-
fects between the commonly assumed motional model of
isotropic diffusion in a cone and either the elliptic or the
uni-dimensional motional models are also quite small at
�<5% (Section 4). Compared to the continuous uni-di-
mensional model, the RDC averaged by two-site-ex-
change is three times more sensitive to motion, and,
consequently, bmax values derived using a two site jump
model need to be increased by

ffiffiffi
3

p
to be comparable with

values derived using a continuous uni-dimensional
model.

Assuming a static model and a small error of only 5%
in the rhombicity value Robs, the experimental value of
R, this small error is found to have an impact upon
the back calculation of the angles hav and /av. These an-
gles define the orientation of an internuclear vector in
the PAS of A and especially for those internuclear vec-
tors lying in or close to the equatorial plane the 5% error
in R can translate into angular errors for hav and /av of
up to ±5� or ±9�, respectively when assuming
Robs = 1.05R and R = 0.3 (Section 5). Section 6 consid-
ers a few experimental and intrinsic molecular properties
each of which is expected to give rise to only a relatively
small influence upon an experimental RDC. Also con-
sidered in Section 6 is the effect that either a small verti-
cal or a small horizontal angular atomic displacement
has upon a RDC. For instance, assuming a static mo-
tional model, and for relatively small vertical angular
deviations, of only 3�, quite significant changes of up
to �9% of the maximum RDC can arise. This simple
calculation gives some insight into the effect upon a
RDC that a molecular structure exhibiting coordinate
error may exert. Motion influences the upper and lower
bounds of the distribution of RDCs and in the case that
the alignment tensor A exhibits rhombicity, R, the
experimental estimate of the rhombicity, Robs, from
the distribution of RDCs can lead to quite large errors
in the estimate of R which may be up to �14% in the



Fig. 6. Plots of the difference between a static RDC having an
orientation defined by the polar angles (hav,/av) and that obtained
after a vertical (A) or a horizontal (B) displacement equivalent to either
1�, 2� or 3� employing Da = 1 Hz and R = 0.3. These surfaces compare
the effect of angular displacements and the experimental error on the
measured RDC.
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case of vertical uni-dimensional motion (second table of
Appendix B.2). These conclusions were formed from
simulations which used distributions of RDCs com-
posed of 6316 internuclear vectors where the upper
and lower bounds of the distribution are well defined,
however, many fewer RDCs are measured in an experi-
ment in which case the upper and lower bounds are
much less well defined possibly leading to some addi-
tional error in Robs.
Appendix A. Free diffusion about a fixed symmetry axis

For the particular motion shown in Fig. 1F, which
describes the free diffusion of the inter-nuclear axis
about a fixed symmetry axis, the angle b is constant
and set to bmax, and is the angle between the internuclear
axis and the symmetry axis. No Taylor series expansion
is needed, hence 0� 6 |bmax| 6 180�, and the observed
RDC is given by
hRDCiC ¼ ð3cos2bmax � 1Þ
2

� RDCðvavÞ: ðA:1Þ

For a CH vector in an idealised methyl group, the angle
bmax (C–C–H angle) is approximately 111� [34], and the
scaling factor P2(cosbmax) becomes �0.31.

We note that if the result from Eq. (17) is averaged
over the angle c (where c varies between 0 and 2p), the
exchange averaged RDC hhRDCiC2sites

ic is scaled by the
factor ð1� 3b2

max=2Þ rather than simply containing a
term proportional to b2

max. It is useful to perform this
calculation because, for a uniform ensemble of internu-
clear vectors exhibiting two site exchange, jumping by
a fixed angle 2bmax (within the limits 0� 6 bmax 6 20�)
and exhibiting a variable angle c (see Fig. 1E), the pro-
cess of averaging over the angle c becomes equivalent
to free diffusion about a fixed symmetry axis if the an-
gle bmax is identified with the angle between the diffu-
sion axis and each internuclear vector. This new
scaling factor agrees with that of Eq. (21), when a Tay-
lor series expansion is applied to cos2bmax, leading to
ð3cos2bmax � 1Þ=2 � 1� 3b2

max=2. Employing these
arguments, a connection can be made between a con-
tinuous two site jump model of section 3D and Woess-
ner�s dynamic model.
Appendix B. Motional averaging and the effect upon
the distribution of RDCs

The effect of the angular fluctuations upon the distri-
bution of the RDCs is compared for the different dy-
namic models. The distribution of RDCs is important
because, for a protein of unknown structure, it is used
to determine the parameters Dobs

a and Robs that characte-
rise the alignment tensor, A. In the following sections,
Dobs

a and Robs correspond to the values of Da and R in-
ferred from a distribution of RDC values.
B.1. Remarks on RDC distributions

It has been pointed out [38] that the magnitude of the
alignment tensor A determined from a distribution of
RDCs depends not only upon the number of available
dipolar vectors but also upon the uniformity of their dis-
tribution. In general it is quite difficult accurately to
determine the upper bound of the distribution, 2Dobs

a ,
because the probability of observing the largest RDC
is proportional to sinh and h tends to zero. The position,
in a distribution of RDCs (see Fig. 7) occuring with the
highest frequency is located at Dobs

a ð�1þ 3Robs=2Þ. In
many cases, however, this maximum value is also not
well defined due to the limited number of experimental
RDCs. Quantitatively, this limitation can be expressed
by the width of the histogram bin size, W,
(W = 2(IQR)N�1/3) [39], where N is the total number



Fig. 7. Histograms of the distributions calculated for the static,
isotropic, horizontal, and vertical motional models, using bmax = 15�,
Da = 1 Hz, and (A) R = 0.0, (B) 0.2, (C) 0.4, and (D) 0.6. For each
dynamicmodel the distribution ofRDCswas formed from 6316 vectors.
The width of the bin for each histogram is 0.15 Hz (illustrating the level
of precision when 6316 different orientations are used). The numbers on
the left and right hand sides are the lower ð�Dobs

a ð1þ 3Robs=2ÞÞ and
upper ð2Dobs

a Þ bounds of each distribution respectively. The red bar and
number beneath each histogram represent the position and magnitude
(Hz)of theRDCoccurringwith thegreatest probability, forwhich, in the
majority of cases, no change can be detected.
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of RDCs and IQR is the interquartile range (the 75th
percentile minus the 25th percentile). The IQR corre-
sponds to the central 50% of the data, and thus is not
affected by outliers [39]. For example, for a simulated
uniform distribution of 6316 RDCs with Da = 1 Hz
and R = 0.3 having a total span of 3.45 Hz, it is found
that 1579 RDCs (25% of the total) are less than
�0.72 Hz (which is the 25th percentile), 4737 RDCs
(75% of the total) are less than +0.71 Hz (which is the
75th percentile) and the IQR value, in this case, is de-
fined by IQR = 0.71 � (�0.72) = 1.43 Hz. Thus, in the
case of 6316 RDCs, the optimum histogram bin size is
0.15 Hz, which is relatively large considering the number
of RDCs used in this simulation, and corresponds to a
total of 23 bins. In the case of a total of 500 RDCs,
the optimum histogram has a bin width W = 0.36 Hz
with a total of 10 bins; for a total of 100 RDCs the his-
togram will be made up of 6 bins having a width
W = 0.62 Hz. Consequently, the maximum value of
the distribution is not well defined, especially when the
number of RDCs is �6316, which will, typically, be
the case in an experimental situation even allowing for
a number of different sets of internuclear vectors.

B.2. Models of local motion and the effect on a

distribution of RDCs

To compare the influence of the different types of
internal motion upon Dobs

a and Robs, four distributions
of RDCs were simulated using Eqs. (1), (7), (14), and
(15), assuming bmax = 15�, and Da = 1 Hz. A uniform
distribution of RDCs was formed using 6316 unit vec-
tors and for each motional model, four different values,
(0, 0.2, 0.4, and 0.6), were employed for R. Histograms
of the dipolar couplings are shown in Fig. 7. In order to
assess the differential changes to the distributions from
the different types of local internal motion, the changes
to the upper and lower bounds and to the maximum of
each distribution were monitored. The effect of experi-
mental noise on the distribution of RDCs has been trea-
ted in [40]. An additional distribution made of 12,632
RDCs, which is not represented in Fig. 7, was also gen-
erated by superimposing the distributions from the hor-
izontal and vertical models. This corresponds to the
situation where both types of unidimensional motions
occur simultaneously, for distinct internuclear vectors;
this situation is referred to as ‘‘Mixed’’ in the first table
of Appendix B.2. The parameters Dobs

a and Robs inferred
from the upper and lower bounds of each distribution,
were calculated and the results are shown in the first ta-
ble of Appendix B.2. The results for isotropic internal
motion are quite simple: the new distribution influenced
by motion can be obtained by a homotethy from the dis-
tribution of the static model. For each value of R, the
RDC are proportional to Dobs

a ¼ DaSiso and Robs is equal
to R (first table of Appendix B.2). If the motion is
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isotropic, and Siso is the same for all pairs of nuclei, the
effect of the motion is to scale down the coefficient Da,
allowing only the determination of Dobs

a ¼ DaSiso. How-
ever, if Siso is not the same for all pairs of nuclei, this
general statement no longer applies. Horizontal internal
motion is estimated to have only a relatively small effect
on the lower bound of the distribution with a maximum
effect of +0.04 Hz (�2.1%), representing only a rela-
tively small difference compared to the static model,
Fig. 5D. The maximum impact on the upper bound is
�0.07 Hz, occuring when R is small and compared to
the static model reduces Dobs

a by �3.5%. Robs is calcu-
lated to be systematically larger than R, by +0.024 when
R = 0 and by +0.011 when R = 0.6, and the change is
most significant when R is small (first table of Appendix
B.2). For vertical internal motion, the maximum effect
on the lower and upper bounds, compared to the static
model, is +0.09 and �0.07 Hz, respectively, and in each
case, the value for Dobs

a is smaller than Da by �3%. Robs

is reduced compared to R and when R = 0.2 the differ-
ence is calculated to be about 14%. The changes to Robs

are seen to be quite different between the vertical and
horizontal motional models, where Robs is respectively
either larger or smaller over the complete range of R
Fig. 8. Histograms for (A) ðS2
LSÞ

1=2 for all of the NH vectors in ubiquitin [1
Figures for Dobs

a (C) and Robs (D). The histograms were formed from 50 sepa
(E) Dobs

a and (F) Robs were calculated from 50 separate distributions of RDC,
the histograms in (C–F), each individual RDC was multiplied by a randomly
the median values of the distributions is shown located by an orange line.
(see first table of Appendix B.2). If the distributions cor-
responding to unidimensional horizontal and vertical
motions are superimposed (first table of Appendix B.2,
‘‘Mixed’’), assuming each local motion occurs simulta-
neously but on separate dipolar vectors, the value for
Dobs

a is found to be similar to vertical motion over the
whole range of R. However, Robs is systematically larger
than R, thus following to some extent the behaviour of
horizontal unidimensional motion; the changes are more
significant at low R values. In the discussion above, we
have assumed that each vector undergoes identical mo-
tional amplitude of 15�, hence additional effects might
be expected if there is a spread in the amplitudes of
the local motion. These effects are discussed in the fol-
lowing subsection. To gain quantitative insight into
the amplitude of local internal motion, Lipari and Szabo
[12] introduced the order parameter S2

LS. S
2
LS is typically

determined from a series of heteronuclear relaxation
datasets and Tjandra et al. [15] measured S2

LS for each
NH internuclear vector in ubiquitin. A histogram of
the ðS2

LSÞ
1=2 values is shown in Fig. 8. Assuming each

order parameter is associated with isotropic internal mo-
tion in a cone, the resulting distribution of cone semi-an-
gles is displayed in Fig. 8B. The median cone angle bmax
5], (B) the cone semi-angle bmax, assuming isotropic internal motion.
rate distributions composed of 6316 vectors using Da = 1 Hz, R = 0.3.
with each composed of only 120 vectors, using Da = 1 Hz, R = 0.3. For
chosen ðS2

LSÞ
1=2 value from the histogram of (A). For each histogram,
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is 18.7� (indicated in orange) and corresponds to a value
for Siso of 0.92. In the following, we assume that to eval-
uate the effect of motion upon a uniform distribution of
RDCs, using Eq. (7), in the case that each RDC is asso-
ciated with a different value for Siso, this distribution of
order parameters is suitable for selecting individual
Siso ¼ ðS2

LSÞ
1=2 values. Each RDC value in a uniform dis-

tribution of 6316 dipolar vectors, formed using
Da = 1 Hz and R = 0.3, was multiplied by a randomly
chosen value from the distribution of ðS2

LSÞ
1=2 values.

The process was repeated 50 times and the values for
Dobs

a and Robs obtained in each case are shown as histo-
grams in Figs. 8C and D, using a bin width of 0.003 and
0.005 (the optimum value with N = 50 and IQR = 0.005
and 0.009, respectively). The median value for Robs of
0.300, Fig. 8D, is not significantly changed from its ini-
tial value R, but, the median value for the quantity
Dobs

a ¼ 0:95, changes by about 3%, which is slightly
greater than DaðS2

LSÞ
1=2
med ¼ 0:92. Hence, when each

RDC has a different Siso value, fast internal isotropic lo-
cal motions can cause Dobs

a to change slightly while the
rhombicity ratio, Robs, is essentially equal to R. The
spread in the distributions of Dobs

a and Robs characterized
by their standard deviation is rather small, correspond-
ing respectively to 0.5% and 2% of the median values.
The value for the quantity Dobs

a of 0.95 corresponds to
Da multiplied by the maximum expected from the distri-
bution of ðS2

LSÞ
1=2 values employed here. This value most

likely arises because of the large number of RDCs in-
cluded in the simulations and, therefore, the maximum
value for ðS2

LSÞ
1=2 has a high probability of being used

for orientations corresponding to the extrema in the dis-
tribution of RDCs. A further four distributions with a
smaller number of vectors (1105, 562, 302, and 120 vec-
tors) were also used to calculate Dobs

a and Robs and the
results are shown in the second table of Appendix B.2.
For N = 120, the histograms for Dobs

a and Robs are
shown in Figs. 8E and F. For 120 vectors, the median
value for Dobs

a , 0.93, is closer to the median value for
ðS2

LSÞ
1=2 and the median for Robs of 0.306 is very close

to the true value for R = 0.3, and is only overestimated
by �2%. For N = 120, the standard deviations of the
values for Dobs

a and Robs are 2.2% and 8%, respectively
of the median values respectively, reducing to 0.5%
and 2% if 6316 vectors are used, second table of Appen-
dix B.2. With a distribution of 120 vectors, the average
value of ðS2

LSÞ
1=2 is the dominant factor in determining

Dobs
a and Robs with large standard deviations. With

6316 vectors, the maximum value for ðS2
LSÞ

1=2 is the
dominant factor with the standard deviations for Dobs

a

and Robs now small. This phenomenon is most likely ex-
plained by the simultaneous presence of two factors,
namely the spread in ðS2

LSÞ
1=2 values and the density of

the orientational sampling (even if the positions corre-
sponding to the maxima are sampled). A sharp fall in
the standard deviations for Dobs

a and Robs (by factors
of 6 and 2, respectively) is observed between 120 and
1105 vectors (second table of Appendix B.2) whereas
only minor changes are found when a further 5000 vec-
tors are added to the distribution. The values of Dobs

a and
Robs are not affected at all by the presence of one residue
featuring a small ðS2

LSÞ
1=2 value (lower than 0.7, Fig. 8),

because in each case, the density of the sampling of
dipolar vectors near the orientations corresponding to
the RDC maxima is sufficient to balance the effect of
the lowest ðS2

LSÞ
1=2 factors. When 120 vectors are

used, the lowest Dobs
a is equal to 0.86, which is much

higher than 0.7.

The values of Dobs
a and Robs calculated form the lower

ð�Dobs
a ð1þ 3Robs=2ÞÞ and upper ð2Dobs

a Þ bounds of the
distribution of RDC shown in Fig. 7
R = 0.0
 R = 0.2
 R = 0.4
 R = 0.6
Dobs
a

Static
 1.000
 1.000
 1.000
 1.000

Horizontal
 0.965
 0.965
 0.970
 0.970

Vertical
 0.965
 0.970
 0.975
 0.975

Mixed
 0.965
 0.970
 0.975
 0.975

Isotropic
 0.950
 0.950
 0.950
 0.950
obs
R

Static
 0.000
 0.200
 0.400
 0.600

Horizontal
 0.024
 0.225
 0.412
 0.611

Vertical
 �0.024
 0.172
 0.372
 0.571

Mixed
 0.024
 0.220
 0.407
 0.605

Isotropic
 0.000
 0.200
 0.400
 0.600
Table of the median values and standard deviations for
Dobs

a and Robs back-calculated from 5 sets of 50 distribu-
tions of RDC using N dipolar vectors (N = 120, 302,
562, 1105, and 6316)
N
 Dobs
a
 SD
 Robs
 SD
120
 0.922
 0.034
 0.306
 0.024

302
 0.933
 0.012
 0.302
 0.015

562
 0.934
 0.01
 0.301
 0.015
1105
 0.934
 0.006
 0.299
 0.012

6316
 0.947
 0.004
 0.3
 0.006
An isotropic motional model has been used, with Da = 1 Hz and
R = 0.3 where each RDC value was multiplied by a randomly chosen
value from the distribution of ðS2LSÞ

1=2 values (obtained from the
relaxation experiments made on ubiquitin, Figs. 8A and B).
B.3. Conclusion

The maximum influence of the particular types of
motions considered here upon Dobs

a , the value of Da

determined from the motionally averaged distribution
of RDC values, is less than 5% when bmax 6 20�. How-
ever, the effect of motion upon R is found to be quite
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model dependent and compared to the static and isotro-
pic models the influence of horizontal or vertical mo-
tions upon the value determined from the distribution
of RDCs, Robs, can be 14%.
Fig. 9. Values for the maximum and minimum (blue), the average
(red), and the standard deviation (green) for the angular corrections
hhor and hver are shown as a function of bmax. For each vector (hav,/av)
in the distribution RDCexp has been generated using a static model, Eq.
(1), with Da = 1 Hz and R = 0.3 and DRDC

dyn was computed using either
Eq. (16) or Eq. (15) or Eq. (7). The angular corrections hhor and hver
were calculated from Eqs. (C.1), (C.2), and (C.3).
Appendix C. The effect of motional amplitude and

motional anisotropy upon the determination of hav and /av

from an individual RDC

The equivalent angular horizontal and vertical dis-
placements, hhor and hver, needed to account for the ef-
fect of horizontal, vertical, and isotropic dynamics
upon the RDC when using a static model have been cal-
culated for different values of bmax (bmax 6 30�) employ-
ing a random distribution of 562 internuclear vectors.
The results are shown in Figs. 9A, B, and C, respec-
tively. For each dynamic model the minimum and max-
imum, the average value and the standard deviation for
the calculated hhor and hver angles are shown. The angles
were computed in the following manner. For each inter-
nuclear vector in the random ensemble, oriented by hav
and /av, the left hand side (LHS) of Eqs. (C.1), (C.2),
and (C.3) were computed using Eq. (15), (14), and (7)
with Da = 1 Hz, R = 0.3 and variable bmax values. hhor
and hver were calculated from the right-hand side of
the following relationships.

ðRDCexp þ DRDC
dyn Þhor ¼ RDCðv00ðhhorÞÞ: ðC:1Þ

The definition of the vector v00(hhor) is given by Eq.
(6).

ðRDCexpþDRDC
dyn Þver ¼Da

�
ð3cos2ðhavþhverÞ�1Þ

þ 3

2
Rsin2ðhavþhverÞcos2/av

�
;

ðC:2Þ

ðSisoRDCexpÞiso ¼ Da

�
ð3cos2ðhav þ hverÞ � 1Þ

þ 3

2
Rsin2ðhav þ hverÞ cos 2/av

�
: ðC:3Þ

In the case of isotropic motion the equivalent
equation containing hhor instead of hver, i.e., (Siso

RDCexp)iso = RDC(v00(hhor)), does not always have a
solution. For example, when R = 0 and hav = 90�, the
static RDC is �Da and a horizontal angular displace-
ment leaves the vector in the equatorial plane where
the RDC is unaffected and in this case no value for hhor
can satisfy the LHS of this equation. The average value
for hver from either vertical or isotropic motion is very
small, whereas, for horizontal motion there is a slightly
larger average value for hhor and its standard deviation
is also larger reaching �5� when bmax = 20�. The stan-
dard deviations for hver are lower for both types of
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motion and reach �3� when bmax = 20�. Whatever the
form of the continuous internal motion the average
RDC, formed from the ensemble of allowed conforma-
tions for each internuclear vector, has a similar orienta-
tion (hback,/back) to at least one vector in the ensemble
(which is a consequence of the mean value theorem)
but this vector is not necessarily the vector in the average
angular orientation (hav,/av). Consequently the back cal-
culated orientation (hback,/back) using the averaged RDC
lies within the ensemble of conformations but may be
tilted from the average angular orientation (hav,/av).

We note that a fraction of the effect of motional aver-
aging can be captured by the alignment tensor (Dobs

a value,
cf. Appendix B), however, this would not absorb any
additional motion observed for a specific internuclear
vector. For example, if all the vectors but one experience
isotropic motional averaging with the same amplitude
(the RDC is scaled down by Siso), the effect of motion
for these vectors would be captured by Dobs

a ¼ SisoDa. If
one of them undergoes the same isotropic motion super-
imposed with uni-dimensional motion, itsRDCwill be gi-
ven by Eq. (16). Hence, if this isotropic motion is
undetected, the effect of the unidimensional motion re-
mains for this particular vector, and the approach used
above allow us to link the effect of an additional motional
averaging process ðDRDC

dyn Þ to the angular precision of the
model structure concerning this particular vector.
References

[1] L.C. Snyder, Analysis of nuclear magnetic resonance spectra of
molecules in liquid-crystal solvents, J. Chem. Phys. 43 (1965)
4041–4050.

[2] R.E.J. Sears, E.L. Hahn, Upper limits to electric-field-induced
nuclear magnetic dipole–dipole couplings in polar liquids, J.
Chem. Phys. 45 (1966) 2753–2769.

[3] J.D. Macomber, N.S. Ham, J.S. Waugh, Upper limit to the
electric-field effect on the NMR spectrum of nitromethane, J.
Chem. Phys. 46 (1967) 2855–2856.

[4] A.D. Buckingham, K.A. McLaughlan, High resolution nuclear
magnetic resonance in partially oriented molecules, Prog. NMR.
Spectrosc. 2 (1967) 63–109.

[5] J.W. Emsley, J.W. Lindon, NMR Spectroscopy Using Liquid
Crystal Solvents, Pergamon Press, Oxford, 1975.

[6] J. Lohman, C. MacLean, Magnetic field induced alignment effects
in 2H NMR spectra, Chem. Phys. Lett. 58 (1978) 483–486.

[7] J.R. Tolman, J.M. Flanagan, M.A. Kennedy, J.H. Prestegard,
Nuclear magnetic dipole interactions in field-oriented proteins:
information for structure determination in solution, Proc. Natl.
Acad. Sci. USA 92 (1995) 9279–9283.

[8] N. Tjandra, A. Bax, Direct measurement of distances and angles
in biomolecules by NMR in a dilute liquid crystalline medium,
Science 278 (1997) 1111–1114.

[9] M.R. Hansen, L. Mueller, A. Pardi, Tunable alignment of
macromolecules by filamentous phage yields dipolar coupling
interactions, Nat. Struct. Biol. 5 (1998) 1065–1074.

[10] R. Tycko, F.J. Blanco, Y. Ishii, Alignment of biopolymers in
strained gels: a new way to create detectable dipole–dipole
couplings in high-resolution biomolecular NMR, J. Am. Chem.
Soc. 122 (2000) 9340–9341.
[11] N. Tjandra, J.G. Omichinski, A.M. Gronenborn, G.M. Clore, A.
Bax, Use of dipolar 1H–15N and 1H–13C couplings in the structure
determination of magnetically oriented macromolecules in solu-
tion, Nat. Struct. Biol. 4 (1997) 732–738.

[12] G. Lipari, A. Szabo, Model-free approach to the interpretation of
nuclear magnetic resonance relaxation in macromolecules. 1.
Theory and range of validity, J. Am. Chem. Soc. 104 (1982) 4546–
4559.

[13] J.R. Tolman, H.M. Al-Hashimi, L.E. Kay, J.H. Prestegard,
Structural and dynamic analysis of residual dipolar coupling data
for proteins, J. Am. Chem. Soc. 123 (2001) 1416–1424.
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